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Displacing small particles by unsteady
temperature fields
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A model for particle propulsion by an instantaneous heat discharge is presented.
The flow is driven by a gravity-independent transient fluid dilatation, engendered by
an unsteady temperature field which corresponds to heat emission from a localized
source located within the particle. We focus on the highly eccentric case, where the
heat is released in proximity to the particle surface. Solution of the Stokes equations
and subsequent evaluation of the resulting hydrodynamic thrust yields a nonlinear
non-autonomous ordinary differential equation governing the evolution of particle
position with time. This equation depends upon a single parameter which represents
the relative effects of heating magnitude and initial geometry.

1. Introduction
The miniaturization revolution in science and technology is posing significant

engineering challenges in various fields of mechanics and applied physics. Among them
is the controlled animation of fluid motion at the sub-micron scale, and specifically
the delicate propulsion and positioning of small bodies which are immersed in liquids.
These bodies may be either biological cells or the envisioned man-made micro-robots
(Iddan et al. 2000).

Conventional flow and propulsion mechanisms, which abound at the ‘macroscopic’
scales, are often ineffective at micron scales and below. In pressure-driven flows, for
example, the characteristic velocity varies as the square of characteristic length L,
resulting in rapidly diminishing performance as L shrinks. The desire for simple
yet effective flow mechanisms at the microscale has led to the use of innovative
engineering devices (see Stone, Stroock & Ajdari 2004) which employ a multitude
of physicochemical phenomena, such as electrokinetics, capillarity, and wettability.
An attractive feature of these phenomena is the scaling with length dimension: the
magnitude of electrokinetic flows, for example, is roughly independent of L. Of
course, physicochemical effects can only be used in specific systems which possess
the necessary ‘ingredients’: free interface for surface-tension driven flows, electrolyte
solution for electrokinetic flows, etc.

Here we propose the use of a different phenomenon, exploiting the thermal
expansion of fluids. Specifically, we focus upon time-dependent density variations
occurring in liquids whose temperature fields vary with time (say, by virtue of an
unsteady heating process). Because of the requirement of mass conservation, such
variations are automatically accompanied by fluid motion. In contrast to buoyancy-
driven free-convection flows (also driven by thermal expansion) which are animated
by the dynamic action of gravity, the unsteady mechanism described herein is
purely kinematic (and is independent of the presence of gravity). Being robust and
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relatively insensitive to the properties (polarity, wettability) of the ambient liquid, the
‘unsteady-density’ mechanism may therefore prove attractive in various applications,
even compared with its physicochemical counterparts. The physical features of flows
driven by time-dependent temperature fields have been recently discussed by Yariv &
Brenner (2004).

Here we consider the possibility of using unsteady expansion to propel a rigid
particle in an otherwise stationary liquid medium. The requisite heating may evolve
naturally from existing processes within the particle (e.g. Joule heating), or may
be deliberately generated. The purpose of this paper is to present the qualitative
aspects of this proposed propulsion mechanism using a simple model problem. Since
heat transport is a scalar process with no preferred direction in space, the use of
flows driven by unsteady thermal expansion for propulsion objectives requires an
asymmetric geometry. We here address what is perhaps the simplest model possessing
such asymmetry: the propelled body is taken to be a rigid sphere of uniform thermal
properties, and the unsteady heating is modelled by an instantaneous release of a
concentrated amount of heat at an internal point of the sphere (located off centre).
The emitted heat generates a transient temperature disturbance relative to the pre-
existing uniform value. While this disturbance (together the concomitant fluid and
particle motion) eventually fades away, the asymmetry guarantees a residual particle
displacement, the calculation of which constitutes the main goal of this paper.

2. Problem formulation
Consider a stationary sphere of radius a positioned in an unbounded stationary

fluid domain. In this reference state, the system is at mechanical and thermodynamic
equilibrium; the quiescent fluid possesses uniform pressure and density values, say
p∞ and ρ∞, and the temperature in the entire space is given by the uniform value
T∞. At time t =0 a finite amount Q of heat is released at an interior point of
the particle at a distance d from the sphere’s surface (0 < d < a), engendering a
transient temperature disturbance. As a result of the fluid’s thermal expansion, this
disturbance is accompanied by a density perturbation; owing to the requirement of
mass conservation, a transient flow field is established.

The transport and flow processes are conveniently described in an inertial coordinate
system fixed with respect to the distant fluid. Its origin O is chosen as the heat release
point, and its Z-axis is taken to be the line connecting O to the sphere’s centre.
Owing to the axial symmetry of this configuration, the fluid motion produces a
hydrodynamic force on the particle which is aligned along the Z-axis. Accordingly,
the particle’s time-dependent translational velocity adopts the form U(t) = ẑ U (t).
After attenuation of the temperature disturbance the fluid’s velocity diminishes, as
does U (t). Nevertheless, the entire transport process results in a net translation of the
sphere along the Z-direction, namely

∫ ∞
0

U (t) dt . This displacement is conceptually
measured by following a particle-fixed reference point P located at the sphere surface
(denoted here by S). In what follows it is convenient to choose P as the sphere’s
‘negative’ pole, whose time-dependent Z-coordinate, say Z−(t), satisfies Z− (0) = −d .
The accumulated particle’s displacement is therefore given by Z− (∞) − Z− (0). A
schematic of the particle and coordinate system, at times t = 0 and t > 0, is provided
in figure 1.

Given the small values of the thermal expansion coefficient in liquids (about
10−4 K−1 for water), the heat transport and the concomitant flow are governed by a
linearized equation set appropriate to weak thermal forcing (Yariv & Brenner 2004).
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Figure 1. Schematic of the sphere geometry.

Thus, the temperature field obeys the linear conduction equation

ρ∞cp

∂T

∂t
= k∇2T + q(x, t), (2.1)

in which cp and k respectively denote the isobaric specific heat and thermal con-
ductivity of the fluid in its reference state, and q(x, t) is a heat-source term. The
resulting fluid expansion is governed by a Boussinesq-type linearization about the
reference state, ρ − ρ∞ = −βρ∞(T − T∞), with β denoting the thermal expansion
coefficient evaluated at the reference state. This expansion animates fluid motion
according to the linearized mass-conservation equation

∇ · v = β
∂T

∂t
, (2.2)

which is supplemented by the compressible Stokes equation,

µ
[
∇2v + 1

3
∇(∇ · v)

]
= ∇p. (2.3)

Here, µ is the dynamic viscosity of the liquid evaluated at the reference state. (Note
that the quasi-steady variant of the momentum balance is used: for flows driven by
diffuse thermal processes, this step is equivalent to the assumption of a large Prandtl
number.) In principle, all fluid properties may depend upon the temperature (as does
the density); however, consistency with the linearization scheme necessitates that those
appearing in (2.1)–(2.3) are evaluated at the reference state.† The source term in (2.1)
is modelled by the impulsive distribution

q(x, t) = Q δ(x)δ(t). (2.4)

Here, δ(· · ·) denotes Dirac’s delta function.

† While the viscosity of liquids (as well as other transport properties) may have a stronger
dependence on temperature than the density, this dependence would only appear in higher-order
corrections: viscosity variations, per se, do not animate fluid motion, and can only modify the
expansion-driven flow.
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In the absence of external force fields, the hydrodynamic force acting on the particle
must vanish:

F =

∮
S

dA n · σ = 0. (2.5)

Here, n denotes an outward-pointing unit vector normal to S, and σ is the Newtonian
stress tensor:

σ = −pI + µ
[
∇v + (∇v)† − 2

3
(∇ · v)I

]
. (2.6)

Since only the derivatives of p and T appear in (2.1)–(2.3), we hereafter use these
symbols to denote the respective disturbances (relative to p∞ and T∞) generated by
the heating process. (The hydrodynamic force (2.5) is invariant under the addition
of a uniform value to the pressure field.) Thus, all flow variables – v, p, and T –
attenuate at large distances from the particle. On the surface S the fluid adheres to
the particle, v = U(t), whereas the appropriate boundary conditions governing the
temperature field depend upon the specific thermal model of the particle’s material.

The flow and transport problems depend upon the instantaneous particle position,
which is embodied in the value of Z−(t). This coordinate is governed by the kinematic
equation,

dZ

dt
= U (t), (2.7)

which serves to ‘close’ the governing equations.

3. Heat transport and flow
Since our interest is in the simplest model possible, we consider the case where

the particle possesses the same thermal conductivity and diffusivity as the fluid.
Accordingly, the temperature field is not ‘aware’ of the presence of a particle, and
(2.1) applies in the entire space. The solution to that equation, which attenuates far
from the particle, is given by the free-space Green function of the diffusion equation:

T =
Q

8ρ∞cp

1

(παt)3/2
exp

(
−r2

4αt

)
. (3.1)

Here, r = |x| is the radial coordinate in a spherical coordinate system centred about
O (see figure 1) and α = k/ρ∞cp is the thermal diffusivity of the fluid in its reference
state.

Owing to the linearity of the hydrodynamic problem, it is convenient to decompose
it into three separate components. The first, (vI, pI), is driven by the thermal expansion
process,

∇ · vI = β
∂T

∂t
, (3.2)

but does not take account of the presence of the particle. The inevitable violation
of the boundary conditions on S is rectified by the ‘reflected’ field, (vII, pII). This
flow field is solenoidal, and satisfies vII = −vI on S. (Mathematically speaking, field
I is a particular solution of (2.2), whereas field II is a homogeneous solution.) The
combination of flows I and II describes thermally induced flow about a stationary
particle. The third flow component, (vIII, pIII), is also solenoidal, and satisfies vIII = U
on S. This field represents a pure translation of the particle with velocity U . All three
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fields satisfy the momentum balance (2.3) and vanish at large distances away from
the particle.

3.1. Flow field I

At t = 0 the origin is excluded from the fluid domain. Accordingly, the temperature
in the fluid domain satisfies the homogeneous counterpart of (2.1):

∂T

∂t
= α∇2T . (3.3)

Substitution of this equation into (3.2) readily yields

∇ · vI = βα∇2T . (3.4)

A solution of this equation, which satisfies the attenuation requirement at infinity, is
the potential flow field,

vI = βα∇T , (3.5)

to which, through (2.3), the following pressure field corresponds:

pI = 4
3
µ∇(∇ · vI). (3.6)

Substitution of (3.6) into (2.6) provides the following expression for the stress
communicated by flow field I (since vI is irrotational, the tensor ∇vI is symmetric):

σ I = 2µ[∇vI − (∇ · vI)I]. (3.7)

Finally, substitution of (3.1) into (3.5) yields the explicit expression for the spherically
symmetric field vI = r̂ vr (r) (where r̂ is the unit vector in the radial direction):

vr = − l3r

16(παt)3/2t
exp

(
−r2

4αt

)
. (3.8)

Here, l is an effective penetration length of the initial heat impulse, l3 = βQ/ρ∞cp .
We here focus upon the case of weak thermal forcing, whence l � a. Since the

temperature field (and, consequently, the induced flow) decay exponentially fast away
from O , it is expected that the excess stresses that contribute to the hydrodynamic
thrust on the particle are significant only at a small part of S, say S, centred
about the negative pole P . It is therefore reasonable to consider the highly eccentric
case where the heat is released in proximity to the surface, d � a. To leading-order
terms in d/a, S is approximated by the plane Z = Z−. It is therefore convenient to
employ a cylindrical coordinate system, (z, �, φ), with z = Z− −Z and � respectively
denoting axial and radial coordinates (see figure 1) and φ denoting a (degenerate)
azimuthal coordinate. In that system, the axial and radial velocity components of vI

are respectively given by

wI = −vr

Z

r
= − l3(z − Z−)

16(παt)3/2t
exp

(
−r2

4αt

)
, (3.9a)

uI = vr

�

r
= − l3�

16(παt)3/2t
exp

(
−r2

4αt

)
, (3.9b)

where r = [(Z− − z)2 + � 2]1/2.
The contribution FI of (vI, pI) to the hydrodynamic force acting on the particle

originates from stresses acting on S (where, to leading-order terms, n = ẑ) and is
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therefore given by (cf. (3.7))

FI = 2µ

∫
z=0

dA ẑ · [∇vI − (∇ · vI)I]. (3.10)

It is obvious from symmetry considerations that this force is oriented along the
z-axis, FI = ẑ F I. Accordingly, only the component ẑ ẑ ∂wI/∂z of ∇vI contributes to
FI. Substitution of (3.1), (3.2), and (3.9) readily yields

F I =
µl3

16(παt)3/2t
exp

(
−Z2

−
4αt

) ∫
z=0

dA

(
4 − � 2

αt

)
exp

(
−� 2

4αt

)
. (3.11)

3.2. Flow field II

Flow field I results in normal and tangential velocity components on S, both
violating the null boundary condition existing on the surface of a stationary particle.
Consider now the ‘reflected’ flow field, (vII, pII), which satisfies the incompressible
Stokes equation,

∇ · vII = 0, (3.12a)

µ∇2vII = ∇pII, (3.12b)

together with attenuation conditions at infinity (when either z or � becomes large).
This field is driven by the boundary conditions

vII = −vI on S, (3.13)

imposed so as to restore the impermeability and no-slip condition on S.
The resultant excess stresses are given by (cf. (2.6))

σ II = −pI + µ[∇v + (∇v)†]. (3.14)

As with field I, symmetry arguments necessitate that the force resulting from these
stresses must be directed along the z-axis, FII = ẑ F II. Again, it is only the component
ẑ ẑ ∂wII/∂z of ∇vII that contributes to the force, leading to the expression

F II =

∫
z=0

dA

(
−pII + 2µ

∂wII

∂z

)
. (3.15)

Since the ‘inducer’ field I is spherically symmetric (and, specifically, axisymmetric), it
is clear that flow field II must be axisymmetric. Thus, the velocity vector vII comprises
only axial and radial components, wII and uII, which are both independent of the
azimuthal angle φ. In terms of the cylindrical coordinates, the continuity equation
(3.12a) adopts the form

1

�

∂

∂�
(�uII) +

∂wII

∂z
= 0, (3.16)

while the respective axial and radial components of the momentum balance (3.12b)
are

µ∇2wII =
∂pII

∂z
, (3.17)

µ

(
∇2 − 1

� 2

)
uII =

∂pII

∂�
. (3.18)
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These equations, which are valid for z > 0, are supplemented by the boundary
condition (3.13), which adopts the form

uII = −uI

wII = −wI

}
at z = 0. (3.19)

The preceding Stokes problem is solved by application of integral transforms.
Specifically, we make use of the Hankel transform of order n (Sneddon 1972)

f̃n(ξ ) � Hn[f (� ); � �−→ ξ ] =

∫ ∞

0

d� �f (� )Jn(�ξ ), (3.20)

with Jn being Bessel functions of the first kind. (With this definition, the relation
between a function and its Hankel transform is symmetric.) The subsequent derivation
is reminiscent of that appearing in a comparable geophysical model of viscous flow
near a free surface (Haskell 1935; Sneddon 1972).

Forming the zeroth-order transform of (3.16)–(3.17) and the first-order transform
of (3.18) yields the following system of ordinary differential equations:

ξ ũII
1 +

dw̃II
0

dz
= 0,

µ

(
d2

dz2
− ξ 2

)
w̃II

0 =
dp̃II

0

dz
,

µ

(
d2

dz2
− ξ 2

)
ũII

1 = −ξp̃II
0 .

The solutions of this system which vanish at large values of z are

w̃II
0 = [A (ξ ) + ξzB (ξ )] e−ξz,

ũII
1 = [A (ξ ) − B (ξ ) + ξzB (ξ )] e−ξz,

p̃II
0 = 2µξB(ξ )e−ξz.

The functions A(ξ ) and B(ξ ) are determined from the appropriate Hankel transforms
of the boundary conditions (3.19). This procedure yields

A(ξ ) = −H0[w
I(z = 0); � �−→ ξ ] (3.21)

as well as a comparable expression governing B(ξ ).
In principle, forming the inverse transforms of (3.21) provides the expressions for

(vII, pII). However, this detailed procedure proves unnecessary, as only the values at
z = 0 are required for the evaluation of F II. Since substitution of z = 0 commutes
with the application of the inverse Hankel transform, the integrand in (3.15) is given
by −2µH0[ξA(ξ )|ξ �−→ � ]. Substitution of (3.9a) evaluated at z = 0 into (3.22), in
conjunction with the identity,

Hn

[
�ne−� 2/b2

; � �−→ ξ
]

=

(
1

2
b2

)n+1

ξne−ξ 2b2/4,

furnishes the following expression:

F II =
µl3

16(παt)3/2t
exp

(
−Z2

−
4αt

)∫
z=0

dA
�Z−

αt
exp

(
−� 2

4αt

)
. (3.22)
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4. Particle motion
When performing the integration in (3.11) and (3.23), with dA=2π� d� , the upper

integration limit is set to � = ∞. This procedure yields the combined force,

F I + F II =
µl3

4αt2
Z− exp

(
−Z2

−
4αt

)
, (4.1)

contributed by flows I and II. (The convergence of the integrals supports the validity
of replacing S with S.) Flow field III represents a quasi-steady translation of a
spherical particle in an incompressible viscous fluid. Accordingly, it contributes the
classical Stokes drag force, FIII = ẑ F III, with F III = 6πaµU .

The condition of a force-free particle, F I +F II +F III = 0, together with the closure
relation (2.7), furnish the following ordinary differential equation governing Z−(t):

dZ−

dt
= − l3

24πaα

Z−

t2
exp

(
−Z2

−
4αt

)
. (4.2)

Since dZ−/dt is opposite in sign to Z− (which is initially negative), it is clear that
the particle moves in the positive Z-direction. The position Z− = 0 is an equilibrium
point, which was to be expected from symmetry arguments: at this position the
negative pole P coincides with the centre of the spherically symmetric temperature
profile. Note however that P does not necessarily reach the coordinate Z = 0, since at
t → ∞ any value of Z− is a possible equilibrium point. Accordingly, −d � Z−(∞) � 0.
This implies that Z− � a for all times, a posteriori confirming the consistency of
approximating S by a moving plane.

Equation (4.2) introduces the time scale l3/aα at which the transient motion is
expected to take place. This, however, is not an exclusive characteristic time: the
exponential term introduces yet another scale, d2/α, which depends upon the initial
condition. When analysing equation (4.2) it is convenient to employ dimensionless
notation, using the normalized displacement and time variables ζ = −Z−/d and
τ = 24πaαt/ l3. The nonlinear equation (4.2) then takes the form

dζ

dτ
= − ζ

τ 2
exp

(
−ζ 2

γ τ

)
, (4.3)

in which the parameter γ is proportional to the ratio of the two time scales identified
above:

γ =
1

6π

l3

ad2
. (4.4)

As such, it represents the combined effect of the heat source magnitude Q and the
proximity distance d: the larger is γ , the more dominant is the expansion effect in the
vicinity of S. Equation (4.3) is to be solved subject to the initial condition ζ (0) = 1.
Note that the exponential factor becomes O(1) only at τ ∼ O(γ −1), corresponding to
t ∼ O(d2/α).

For short times, τ � γ −1, the right-hand side of (4.3) is exponentially small, and ζ

is close to unity:

ζ ∼ 1 + h(τ ), h � 1. (4.5)

The leading-order correction h(ζ ) is governed by the equation

dh

dτ
∼ −e−1/γ τ

τ 2
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Figure 2. (a) Evolution of particle position with time for γ = 1 (thick solid line); short-time
approximation (thin solid line); long-time approximation (dashed line). (b) Total particle
displacement as a function of γ .

together with the initial condition h(0) = 0. Simple integration yields the following
expression governing the short-time evolution of ζ (τ ):

ζ ∼ 1 − γ e−1/γ τ . (4.6)

This ‘frozen’ stage is associated with the initial propagation of the temperature profile,
which is exponentially slow.

For large times, τ � γ −1, the exponential term in (4.3) is approximately equal to
unity, hence dζ/dτ ∼ −ζ/τ 2. The final approach to ζ (∞) is therefore described by

ζ ∼ ζ (∞)e1/τ . (4.7)

Because of the singular behaviour of ζ (τ ) at τ = 0 and τ = ∞, no Taylor series
expansion exists about these points. Thus, the unknown constant ζ (∞) cannot
be determined by any rational matching procedure (Van Dyke 1964), and is only
obtainable by numerical integration of (4.3). A typical evolution of ζ (τ ), obtained via
numerical integration of (4.3) for γ = 1, is depicted in figure 2(a) together with the
asymptotic approximations (4.6) and (4.7).

As γ is increased the expansion effects appear earlier, and are therefore of stronger
magnitude. For γ � 1, the final stage (4.7) is reached at τ � 1, when ζ is still close
to unity. Thus, ζ (∞) must be exponentially small. Accordingly, as γ → ∞ the time
evolution of the particle’s position approaches an inverted step function, ζ (τ ) →
−H (τ ), and ζ (∞) = 0. In the other limit, of small γ , the hydrodynamic localized
thrust which acts upon the particle in the neighbourhood of P occurs later and is
therefore of weaker intensity. For γ � 1, the final stage (4.7) is reached only at τ � 1,
when ζ 	 1 and dζ/dτ 	 0. Accordingly, ζ ≡ 1 for γ → 0. The dependence of the
dimensionless net displacement of the particle upon γ is presented in figure 2(b).

5. Concluding remarks
In this paper we have discussed flows generated by time-dependent density fields

which are animated by unsteady heating. Specifically, we have focused upon the
possibility of propelling small particles in an unbounded liquid. In an attempt to
analyse a simple model problem we considered an idealized situation, employing the
following simplifying assumptions: (i) weak thermal forcing; (ii) a spherical particle
possessing uniform thermal properties, which are identical to those of the fluid;
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(iii) large Prandtl number; and (iv) an impulsive and concentrated heating process,
occurring in proximity to the particle boundary. This model leads to a nonlinear
ordinary differential equation governing the time-evolution of the particle position.
The particle tends to move so as to bring its surface into coincidence with the initial
heat release point. As expected, this tendency becomes more pronounced as either
more heat is released or it is discharged closer to the surface.

It is of interest to examine the limitations posed by the simplifying assumptions.
Assumption (i) is supported by the small values of the thermal expansion coefficient
in liquids. Assumptions (ii) and (iii) are not strictly valid, but relaxing them would
result in a more complicated model, which would only modify the qualitative trends
predicted by the present calculation. The most serious limitation to the validity
of the present model is assumption (iv), since realistic heating processes possess a
characteristic time scale (or frequency) as well as a finite spatial excess. Nevertheless,
the present problem captures all the physical elements essential for propulsion by
unsteady heating.

The mechanism discussed herein focuses on unsteady dilatation engendered by time-
dependent temperature fields, and is independent of gravity. Since free convection
is also present in non-isothermal fluid systems, it is of interest to compare the flow
magnitude associated with the two different mechanisms, say for a heating process
characterized by a frequency ω. The flow magnitude resulting from the unsteady
dilatation is set by the mass-balance equation to be O(aωρ/ρ∞), where ρ is a
characteristic density variation (that is, ρ/ρ∞ = O(βT ), with T being a typical
temperature difference associated with the unsteady heating). The buoyancy-driven
velocity scale, on the other hand, reflects a dynamic balance between gravity and
viscous friction, and is therefore O(ga2ρ/µ), with g being the acceleration due to
gravity. The ratio of the former to the latter scales as νω/ga. (Note that this estimate
is independent of the heating magnitude.) Thus, at short length and time scales the
‘unsteady’ contribution dominates over the buoyancy effect. Considering water as the
carrying fluid, we find that the two effects become comparable for ω = O(105a), with
ω measured in inverse seconds and a in centimetres. This relation provides a rough
estimates of the time scales at which the ‘unsteady’ effect becomes noticeable.

I thank Dr Israel Klich for introducing this problem to me.
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